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Dynamical control of systems near bifurcation points using time series
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In order to excite experimentalists to apply a dynamical control mefAbdoet al, Phys. Rev. E53, 299
(1996; 57, 5358(1998], we further introduce a simplified control law in this paper. The law provides a
convenient way(in certain circumstance a necessary Wiy experimentalists to achieve the system control
when the exact position of the desired control objective cannot be known in advance. The validity of the
control law is rigidly verified when the system nears a bifurcation point but our numerical examples show that
it can be extended to a wide parameter region practically.

PACS numbd(s): 05.45—-a

[. INTRODUCTION The most important feature of E@3) is that the desired
objectivex, is replaced by the delayed recoxd This fea-
Dynamical control of experimental systems has drawrture makes the law3) suitable for the control of dynamical
great research interests due to its potential applications iaystems without knowing the desired objectives in advance,
various fields. A lot of control methods have been presentetherefore enlarges the scope of dynamical system controls.
in the past decade and many of them have been proven to Béiis law has also been applied to many experimental situa-
useful in experiments. The purpose of this paper is to introtions[7]. However, its validity has not been proven theoreti-
duce a new control law to experimentalists. For simplicity ofcally. Does the solution guaranteeing the stability of systems
the discussion, we consider a simple one-dimensional mapalways exist? The answer is negative as will be clear at the
end of this section. Some of the present authors have pro-
Xi+1=TF(X;,p) (1) posed[8,9] a general mathematical framework for different
forms of feedback laws, with emphasis on two specific con-
in this section, wher& e R andp is an adjustable parameter. trol laws belonging to the second class. One is
To stabilize a fixed poink, (we only discuss the case of .
fixed point in this paper when explaining the principle; the Pi+1=Pot k(X =X, ) +K'(pi—Po) (4)
extension for period orbit is direcbf the system, one can
add perturbations to the paramegerAccording to the form
of the perturbation laws, we can classify the present control Pit1=Po+K(Xis1—X)+K (Pi—Po)- (5)
methods into two classes. The first class is based on the
perturbation law The former can stabilize, using the previous state,
when the prompt information of;,, is not accessible in
Pi+1=PotK(Xir1—Xy)- (2)  time. While the latter has three functior(s) stabilizing the
unstable orbit(b) tracking the desired orbit when the system
This form is indeed a very basic one used in the controbarameters change as a function of time, @ndargeting the
theory (see, for example, Refl]). Ott, Grebogi, and Yorke unstable orbit from the stable one created at the same tan-
presented a technique of calculating specific value of theential bifurcation point without knowing the position of the
coefficientk employing the knowledge of the local stability unstable one in advance.
of the fixed point in 199Q2]. Thereafter chaos control has  In the present paper we do not want to repeat the(ljw
been considered an intensive topic. The control law in th&Vhat we want to emphasize is the difference among the laws
form of Eq. (2) can be called the “prompt linear feedback (2), (3), and (5). All the three laws have the function of
law” since the prompt measured informati@n, ; is used to  stabilizing unstable orbits and same level of robustness to
construct the linear feedbacks. This control law is adopted ixternal noisg8]. However, the lam3) and (5) have the
most of the articles concerning chaos confi®t5]. tracking function which is able to follow the desired orbit
As the second class, we refer to the control methods usingthen system parameters vary slowBven the variation is
perturbation forms different from the prompt linear feedbackinternal and/or random[8]. The reason is that the desired
law. In this direction, Pyragas presentd a feedback law objectivex, is not included in the laws explicitly and the

and the other is

whose discrete version can be written as perturbations can force the system state trajectory to pursue
the changed position of the desired orbit automatically. This
Pir1=Po+K(Xi11—X). (3)  tracking technique is different from thé4,5] based on the

OGY method where one has tpiessor predictthe changed
position in advance.
*Electronic address: zhaoh@Izu.edu.cn The difference between Eg&b) and(3) is that the valid-
"Mailing address. ity of Eq. (5) is guaranteed as long as the system is control-
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lable while this may not true for Eq3). This is simply  delayed differential equation, and a coupled map lattice, re-
explained in the following. When the system parametés  spectively. In the last section of this paper, the results are
excited, the perturbed system becomes a two-dimensionaummarized and discussed.

system:
Il. SIMPLIFIED CONTROL LAW
Xi+1= (X, pi), 6 . . . L
2= 1P © In this section, we derive a simplified control law of the
form (5) based on the theoretical analyses of R¢&9].
Pi+1=9(Xi,Pi). (7) " When one perturbs an originatdimensional system
To stabilize the desired fixed point is to find a suitable func- Xi+1= (X ,p), (8)

tion g which makes the amplitudes of the two eigenvalues of )

the Jacobian matrif smaller than one. Mathematically, to PY @dding control to the external paramefeas
guarantee the solutions of the problem in any case, the func- _

tion g should be a function which can give any specific ei- Pi+1=90x, P,
genvalues\; and\, whendf/dx anddf/dp are given. It is

i P i the system becomes an+{ 1)-dimensional system and its
easy to show that the equations determining the suitafile

stability can be determined by the eigenvalues of the Jaco-

fixed A; andA, are bian matrix
af ag afag_)\)\ af+ag_ N ﬁ ﬂ
xap dpax Mz o %——( 1T A2). - X ap
| a9 g |’
Thus, at least two adjustable coefficients should be included IX %

into the functiong in order to guarantee the solution in gen-

eral cases. One can see that the [&vcan satisfy this re-  wheredg/dx anddg/dp need to be determined. For nonsin-
quirement while Eq(3) cannot. gulardf 9x andaf ap, to makeT always stable it demands]

In contrast to the control law&) and(3), the control law 5 suitable control functio with (n+1) adjustable coeffi-
(5) has another appropriate function, i.e., to target the Uncients.[The only exception is the prompt linear feedback of
stable orbit from the stable one created at the same tangentigipe (2) where onlyn coefficients can guarantee the exis-

bifurcation point without knowing the position of the un- tence of the solutiod.Thus, when adopting a control law of
stable one in advance. This function provides another poshe type(5), one needs to construct the law as

sible way to devise a new type of switch using the behavior
of the tangent bifurcation instead of the bistability. In a Pi+1=PotK(Xj+1— %)+ K (pi—Po), 9
bistable system, generally, there are two stable bran@res
state$ and a middle unstable brandbr stat@. In experi- wherek e R". To simplify Eq.(9), we need to introduce the
ment, one can only observe the two stable branches by vargoncept of stability region. The stability region is defined as
ing the system parameters, and the middle branch can nevtre region in the coefficient spack,k’), in which any point
be observed from the system output because it is unstabl# it can make all the eigenvalues of the matfihave am-
How to get the unstable middle state is considered as a paplitudes smaller than one. Following the procedure of Ref.
ticularly interesting subjedi10—12. In this paper, we will [9], we can show that the stability region always exists for a
show that the applications of the feedback léay can pro-  fixed pointx, with nonsingulardf/dx anddf/dp. Since the
vide a more general and effective way for experimentallycalculation only needs the data éf/dx and df/dp which
observing the unstable middle branch in a bistable device. can be obtained in principle from an experimental time series
However, the original forni8] of the control law(5) has  using the well-known delay coordinate embedding tech-
not drawn much attention of experimentalists. An importantnique, the control law9) can be used in experimental sys-
reason may be due to the complication in obtaining the suittems without knowing their underlying mathematical mod-
able coefficients. In this paper, we will introduce a simplifiedels, just like the prompt linear feedback law. However, to
form of the feedback law and suggest a convenient way ofmeasure the derivative behavioi (9x anddf/dp), a high-
implementation in experiments: only using the informationquality time series is required, otherwise the deviation of the
of the time series measured from the system output and olsolutions will be too big to make the calculation valid. Usu-
taining the suitable coefficients by simple analyses. The vaally, a high-quality time series is not available in practice,
lidity of the simplified control law is guaranteed for weakly especially when the underlying dynamics is high dimen-
unstable system®ystems near bifurcation points are impor- sional.
tant examples of the weakly unstable onédoreover, the The stability region changes continuously with the eigen-
examples in this paper show that the validity region is suffi-values ofdf/dx. In the case thak, is initially stable, the
ciently wide in general, at least wider than that of the feed-stability region should be a region in the coefficient space
back law(3). around the originK,k’). When the fixed point becomes un-
In the next section we derive the simplified control law stable, i.e., when the maximal amplitude of eigenvalues of
based on the rigid results of RgB]. Section Il gives nu- §f/gx alters from a value smaller than 1 to a value greater
merical results of applying the law to various systems withthan 1, the stability region will depart from the original con-
underlying equations described by thérida map, a time- tinuously. As long as the amplitude of the maximal eigen-
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FIG. 1. (@) The evolution of the stability cross section in the
k-k’ plane. (b) Schematic stability regions of the stabléown-
tetrahedropand the unstabléup-tetrahedronperiodic orbits in the
vicinity of a tangential bifurcation point for a two-dimensional map.
The two tetrahedrons are separated exactly by the hyperplane
=1.

value remains relatively small, one can reasonably expe

that the stability region should lie in the vicinity of the ori-

gin.
Now, let us consider a plank-k’ passing through the

origin of the coefficient space. In the case that the fixed poin
is initially stable, the plane must intersect with the stability

region. When the amplitude of the maximal eigenvalug,of

varies from a value smaller than one to a value greater than
and becomes bigger and bigger, one can easily imagine th
the cross section should evolve as schematically shown i
Fig. 1(a). The cross-section may disappear totally when the

amplitude becomes big enough, i.e., the desired orbit b

comes strongly unstable. This feature stirs our motivation td

simplify the control law(9). Without lose of generality, we
can take the measured signal of an experimental system
the first componentsx; of the system state vectox;
=(Xi,X{_d:Xi_2d, - - - ) from the view point of delay coor-
dinate embedding technique. Notice that the paranmtées

also available from the history records. Thus, we can appl

X; andp; to construct a control law:

Pi+1=Pot+K(Xi+1— X)) +K'(pi—pPo)- (10)
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In the case that the desired fixed point is weakly unstable, the
plane k-k’ should have a cross section with the stability
region and therefore the fixed point can be stabilized using
the control law(10). In this way one avoids the application
of the delayed coordinate embedding technique which de-
mands a measurement of the derivative qualitigs)x and
afldp. As mentioned above, the use of the delay coordinate
embedding technique asks for high quality time series which
is indeed very difficult to get for a lot of real-world systems.
Therefore, we expect that the simplified law should extend
the scope of experimental applications of dynamical control.

Fixing k" =0 in Eq.(10), the law reduces to the Pyragas’
control law. So the Pyragas’ control law is not only a sim-
plified form of Eq.(9) but also a simplified one of Eq10).
Though all these laws can be used to stabilize and track the
unstable fixed point without knowing its position in advance,
we suggest to use the latter instead of the former for the
following reasons. If the underlying dynamics of the experi-
mental system is one dimensional, the control IdW) can
always guarantee the validity of the control while the Pyra-
gas’ law cannot, as pointed out in the introduction section. In
the case that the system is governed bynadimensional
model, the simplified law remains effective if there exists the
cross section between the subspdges, the axisk in the
case of Pyragas’ control law and the pldn&’ in the case of
Eqg. (10)] and the @+1)-dimensional stability region. In
general, the cross section for the pldnd’ can exist in a
wider parameter region than that of the akig his statement
can be easily understood from the demonstration of Rig): 1
the interval of the cross section draxis (i.e., the Pyragas’
case vanishes at, after which the down-trianglgthe case
of law (10)] remains to exist in a certain parameter region.

The coefficientk andk’ can be obtained by scanning the
coefficient plane, as done by Pyragas to find the coeffiéient
in his control law. In addition, one can also catch them by
the following tracking procedure. Let andc, be two close
values of bifurcation parameter, whargis smaller and, is
larger than the bifurcation point. According to the above
analyses, the cross sections@f and ¢, should exist, and
they must overlap as long @&s andc, is close enough, as
hown in Fig. 1a). When we choose a point in the overlap
region and adjust the parameter fram to ¢, slowly, the
system trajectory will be forced to track the fixed point au-
}omatically. Technically, it is easy to find points in the over-
ap region by simply trying several times. At, we pick up
a point, say ki,k;), close to the origin and apply it to the

ystem following the law(10). If the fixed point remains
ﬁ}able constantly when adjusting the parameter ftoro c,,
awen we catch the right coefficients, and at the mean time we
et the idea in which direction we shall find the next point of
coefficients when further adjusting the system parameter,
.e., if k;>0 we can imagine that the cross section should
move to the right when further increasimg otherwisek;

50 indicate an opposite result.

The prerequisite of applying this procedure is that the
desired fixed point must still exist after the bifurcation as the
cases of Hopf bifurcation and period-doubling bifurcations.
In the case of tangent bifurcation, a pair of the fixed points
%ppear simultaneously, with one stable and the other un-
stable. So one cannot apply the above procedure to the tan-
gent bifurcation since no fixed point exist at all in one side of
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the bifurcation point. In this situation if one needs the system
to work on the unstable fixed point instead of the stable one,
what can one do? One must find a control law to force the l

system trajectory to leave the stable one and evolve to the _,! ‘ jf
unstable one. Generally, one may not know the position of -1.04
the unstable fixed point in advance. The answer to this prob- .~ :
lem is to use the control law®) or more conveniently to T ,
apply the law(10) again. In order to explain how to apply the ,
law in this situation, we need to know more detailed knowl- e : ‘
edge about the stability regions of the pair of fixed points
created from a tangent bifurcation. We have shg@hthat
the stability regions of the stable orbif and the unstable -1.08 . , . , . , :
onex, are separated by a hyperplakie=1, and the former 0 450 900 1350 1800

is below the hyperplane while the latter above, as show sche- i

matically in Fig. 1b). Furthermore, the bottoms of the two

stability regions on the hyperplane are partly overlapled FIG. 2. Switching the dynamics betvv_een th_e stab_le and unstable
shadow region in Fig.(b)]. Let (k; ks, . . . k1) be a point period-7 orbits created by a tangent bifurcation using the control
on the shadow region. It is easy to see that the poinF‘W (0.

(kqi,Ks, ... ky1=6) must be located in the stability regions

of x; and the pointk, ks, ... k,1+ &) in that ofx,, where  tangent bifurcation. This orbit loses its stability through a
8 is a small positive number. This feature indicates that ongoeriod-doubling bifurcation aa=1.254. Adding feedback
can control the stability ok, andx, by applying the law(9)  bj+1=bo+Kk(Xj+1—X;) +K'(bj—bg) to the system X; and

with the points of -8 and 1+ 8, respectively. When the b; are recorded in every seventh iteratipmsth k’=0, we
system is close to the bifurcation point enough, the subspadéd that the periodic orbit can be trackedde- 1.274 from
k,—k’ should intersect with the shadow region, which im-a=1.25 by suitably adjustinge from —0.1 to —1. Then
plies that the point K;,0,...,0,1—68) and the point fixing k’ to 0.5 and adjusting suitably we find that it can
(kq,0, . . .,0,14 ) are located within the inner of the stabil- further be tracked t@a=1.30. Clearly, the parameter region
ity regions ofx; andx,, respectively. In the other words, where the desired unstable orbit can be tracked by using the
when we perturb the system according to the feedback lawaw (10) is wider than that of Pyragas’ law.

(10) with (k,k")=(k{,1— 6) thenx, is stable anc, remains To simulate the experimental systems, let us assume that
unstable, but when one perturbs the system withk’() we do not know the position of the unstable period-7 orbit in
=(ky,1+ 8) thenx; becomes unstable and at the mean timeddvance. Ata=1.23 the system trajectory settles down on
X, becomes stable, therefore the system trajectory will depaifie stable period-7 orbit without controlling. We implement
from x, and evolve towards, automatically. Thus for the feedbacks to the system according to the [a® with k=
purpose of targeting, from x,, the feedback law9) can be —0.65 andk’=1.02. Figure 2 shows that the trajectory is
replaced by Eq(10). The suitable value of, although it is ~ driven towards the stable orbit. When we cancel the control
different from a system to another, can be easily found irgfter the state trajectory settles down on the unstable orbit,
experiments since we know that it must be close to zerdhe trajectory returns to the stable one again. Repeating the
(since the system is close the bifurcation ppif@nce one above procedure, we can switch the system output between
obtains a suitable value & one can switch the motion of the stable and the unstable orbits alternately, as shown in
the system between the two fixed points by adding perturbaFig. 2. _

tions with (k,1+ §) alternatively. Our second example is a system described 7uyt)

The above analyses confirm the validity of the 1&10) = —x(t)+ u Sirf[x(t—1)—xg], which is a time-delayed dif-
when the system is close enough to a bifurcation point. Hovferential equation with an infinite number of degrees of free-
far it remains effective must be different for different sys-dom and is applied as a model of laser device constantly
tems. The following examples examine the validity of the[13]. In this equation the evolution timteis measured in the
law for systems with underlying mathematical models de-unit of the delay time. The most interesting behavior of the
scribed by a finite-dimensional map, a time-delayed differ-system is the bistability. In Fig.(8) we fix 7=0.4 andxg
ential equation and a coupled map lattice, respectively. We=3.0 and plotx; againstu, wherex;=x(i) [i.e., the value of
will see that the parameter region in which the la®0)  x(t) measured at=i]. In this figure theS-shaped bistable
remains effective is very wide, usually far into the chaoticsolution curve is the stationary solution of the system. The
parameter region. upper and lower branches of the curve are stable and the
middle branch is unstable. With the increaseuothe upper
branch loses its stability at =2.06 through a Hopf bifurca-
tion, and at the mean time a stable limit cycle appears. When

As the first example we consider the case of thette u increases further, the limit cycle loses its stability zat
map x',y')=(1—ax?+by,x), wherea is assumed to be =2.53 and then a stable period-doubling limit cycle appears.
the bifurcation parameter ariglthe parameter which can be  We first show the results of tracking the stationary solu-
perturbed arount,= 0.3 within sb=0.02. In order to show tion corresponding to the upper branch of fhehaped curve
the success of the feedback la¥0) for high-periodic orbits, and the limit cycle created by a Hopf bifurcation, respec-
we pick up a period-7 orbit created at=1.2267 through a tively. Here we takeu as our feedback parameter, i.e., we

-1.02

1 Control Off Control On  Control Off ~ Control On

IIl. NUMERICAL EXAMPLES
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-0.5 T T T . T FIG. 4. (a) Bifurcation process of a pattern of the coupled lo-
0 200 400 600 800 1000 1200 gistic lattice.(b) The tracked pattern@irst columr) and the corre-

i sponding uncontroled patteriisecond column For clearification

FIG. 3. (&) The bifurcation diagram ok; versusu, wherex; only 30 lattices are shown.

=x(i). The upper branch and the lower branch are the stationargan further be tracked ta=3.0, which is already located in
solutions of the system while the middle branch is the unstablehe chaotic region. Fig.(8) shows the result of switching the

stationary solution. The upper branch bifurcates into a limit cyclemotion of the system between the limit cycle and the chaotic
through a Hopf bifurcation ax=2.06 and the limit cycle itself ntion atu=2.95, wherek=0.8 andk’ =0.5 in the “con-
bifurcates into a period-doubling limit cycle at=2.53.(b) Switch- trol on” sections. '

ing the motion between the lower and the middle branches(e)nd Next, we discuss the problem of targeting the middle

%ranch of the Sshaped curve from the upper or lower
branches. This problem can also be expressed as switching
the dynamical motion of the system between the branches of
add feedbackg; 1= uo+k(Xi+1—X) +K' (1i—uo). INthe  the Sshaped curve. In fact, the two turning points of the
case of stationary solution, the objective to be tracked aps.shaped curve are tangential bifurcation points. Therefore it
pears as a fixed point in the discrete version. We carxput s just the place to use the targeting function of the control
=X(i) to the feedback law. It is found that the desired ob-|aw (10). Let us consider the lower and the middle branches
jective can be tracked only ta=2.08 fromu=2.05 when  as an example. From Fig(& we find thatu=1.82 is the

we fix k' =0 and adjusk suitably. Then fixingk’=0.5 and  turning point of the lower and the middle branches. Accord-
adjustingk suitably, we can track it tqu=2.22 at least. In  ing to Eq.(10) we add perturbations to the parametewith

the case of the limit cycle, the time seriesx@fmeasured in k= —2.0 andk’=1.02 atu=1.80, wherex;=x(i). Figure

the above way generally appears as a quasiperiodic orbf(b) shows that the system trajectory initially lying in the
since the period of the limit cycle is generally not a rationallower branch is driven to the middle branch. After the system
number. In this case we need a different way to measure trajectory settles down on the middle branch, one can add
We recordx(t) at timet;— d asx;, i.e., x;=x(tj— 9), where  feedbacks witk=—2.0 andk’ =0.98 to perturb it to return

t; denotes the time at thigh x(t) crossing the surface of to the lower branch. In this way we can switch the motion
sectionx(t)=1.8 and¢ is a positive number limited in the between the two branches at will, as shown in Figp).3
interval 0< 6<1. In this way one may get an infinite number ~ When the system trajectory settles down on the middle
of different time series with different values @& which  branch, the tracking function of the law can be applied to
corresponds to the feature of the infinite degrees of the delagbtain the whole middle branch, see Figa)3 The tracking
systems. In the neighborhood of the bifurcation point, nuprocedure may fail when the parameters are far from the
merical calculations indicate that the tracking procedure mayifurcation point, which occurs generally for high-
be effective by using;(t;— o) with an arbitraryd. In gen-  dimensional systems, then one has to use the feedback law
eral, the parameter region in which the feedback law keep) instead of(10).

valid depends closely on the coefficiédittoo. For example, The last example is a spatiotemporal system described by
in the case 0f6=0.8, when we fixk’ =0 and adjusk suit-  the coupled logistic lattice, x;,1(n)=(1—¢)f(x;(n))

ably, the limit cycle can be tracked to=2.75 from u +0.5[f(x(n—1))+f(xj(n+1))]+c, wherei is the dis-
=2.53. When fixingk’ =0.5 and adjustind, we find that it  crete time,n the lattice siteg the lattice coupling constant,

the feedback law10).
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andf(x)=1—ax?. cis a parameter that we add to the sys-control based on the output of the latter lattice would be

tem to imitate an external adjustable constant field which caifvalid.
be adjusted around=0. Periodic boundary conditions are

used throughout. Our controlling objective is a pattern found
ata=1.7 ande =0.99 withN=60. This is a period-1 solu- In this paper, we introduced a simple but general feedback
tion of the system. Figure(d) shows the bifurcation process law for the purpose of controlling the dynamical behaviors in
of the pattern represented k)(8) against ata=1.7. Inthe  the neighborhood of the bifurcation point with experimental
direction of decreasing, the desired pattern loses its stabil- signals. The feedback law retains all the functions of the
ity through a period-doubling bifurcation at=0.98. Adding ~ feedback law(9), i.e., stabilizing, tracking, and targeting the
feedbacks; 1= k[ ;4 1(8)—xi(8)]+Kk’(c;—c) to the sys-  unstable orbits, but the requirement of the quality of the ex-
tem ate=0.98 and adjusting in a interval (0.1,0.35) suit- perimental time series is soften dramatically since it does not

ably with k’ =0, we can track the pattern to=0.864, where need to use a delay coordinate embedding technique to cal-
the desired p'attern contracts to a Iing(l)z’x (2)  Culate the feedback coefficients. Even though the validity of
*

=%, (3)=--- =x, (60)=0.5273. the simplified law is guaranteed for weakly unstable systems

On the other hand, the desired pattern loses its stabiliti&1 principle, our numerical calculations have shown that it is
through a Hopf bifurcation with the increase ef at & sually sufficiently useful for practical applications even in

=1.006. We add feedbacks to the system and adjusthe spatiotempora_l system_s. ,
interval (—0.010.24) withk’ =0, the pattern is tracked to /& Would like to point out that the well-known Pyragas

£=1.02. Again, when we adjustandk’ simultaneously it control law is a special form of the control law introduced in

can be tracked at least to=1.05. In the first column of Fig. this paper, 1.€., a special caseldf_=0. We have especially
4(b), we show the tracked patterns at the corresponding p e_mpha§|zed that th_e latter law is more povx_/erful than the
rameters designated in the figure. When we cancel the co ormer in our num_erlcal examples by.comparlng the param-
trol, these patterns will be replaced by new patterns immedi€ter regime in which the law is effective.

ate!y, see the second colump of Figb¥ In general, time ACKNOWLEDGMENTS
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