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Dynamical control of systems near bifurcation points using time series

Zhao Hong,1,2,* Liu Yaowen,2 Ping Huican,2 and Wang Yinghai2

1CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
2Department of Physics, Lanzhou University, Lanzhou 730000, China†

~Received 19 January 1999; revised manuscript received 4 June 1999!

In order to excite experimentalists to apply a dynamical control method@Zhaoet al., Phys. Rev. E53, 299
~1996!; 57, 5358 ~1998!#, we further introduce a simplified control law in this paper. The law provides a
convenient way~in certain circumstance a necessary way! for experimentalists to achieve the system control
when the exact position of the desired control objective cannot be known in advance. The validity of the
control law is rigidly verified when the system nears a bifurcation point but our numerical examples show that
it can be extended to a wide parameter region practically.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Dynamical control of experimental systems has dra
great research interests due to its potential application
various fields. A lot of control methods have been presen
in the past decade and many of them have been proven
useful in experiments. The purpose of this paper is to in
duce a new control law to experimentalists. For simplicity
the discussion, we consider a simple one-dimensional m

xi 115 f ~xi ,p! ~1!

in this section, wherexPR andp is an adjustable paramete
To stabilize a fixed pointx* ~we only discuss the case o
fixed point in this paper when explaining the principle; t
extension for period orbit is direct! of the system, one can
add perturbations to the parameterp. According to the form
of the perturbation laws, we can classify the present con
methods into two classes. The first class is based on
perturbation law

pi 115p01k~xi 112x* !. ~2!

This form is indeed a very basic one used in the con
theory ~see, for example, Ref.@1#!. Ott, Grebogi, and Yorke
presented a technique of calculating specific value of
coefficientk employing the knowledge of the local stabilit
of the fixed point in 1990@2#. Thereafter chaos control ha
been considered an intensive topic. The control law in
form of Eq. ~2! can be called the ‘‘prompt linear feedbac
law’’ since the prompt measured informationxi 11 is used to
construct the linear feedbacks. This control law is adopte
most of the articles concerning chaos control@3–5#.

As the second class, we refer to the control methods u
perturbation forms different from the prompt linear feedba
law. In this direction, Pyragas presented@6# a feedback law
whose discrete version can be written as

pi 115p01k~xi 112xi !. ~3!

*Electronic address: zhaoh@lzu.edu.cn
†Mailing address.
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The most important feature of Eq.~3! is that the desired
objectivex* is replaced by the delayed recordxi . This fea-
ture makes the law~3! suitable for the control of dynamica
systems without knowing the desired objectives in advan
therefore enlarges the scope of dynamical system cont
This law has also been applied to many experimental si
tions @7#. However, its validity has not been proven theore
cally. Does the solution guaranteeing the stability of syste
always exist? The answer is negative as will be clear at
end of this section. Some of the present authors have
posed@8,9# a general mathematical framework for differe
forms of feedback laws, with emphasis on two specific co
trol laws belonging to the second class. One is

pi 115p01k~xi2x* !1k8~pi2p0! ~4!

and the other is

pi 115p01k~xi 112xi !1k8~pi2p0!. ~5!

The former can stabilizex* using the previous statexi
when the prompt information ofxi 11 is not accessible in
time. While the latter has three functions:~a! stabilizing the
unstable orbit,~b! tracking the desired orbit when the syste
parameters change as a function of time, and~c! targeting the
unstable orbit from the stable one created at the same
gential bifurcation point without knowing the position of th
unstable one in advance.

In the present paper we do not want to repeat the law~4!.
What we want to emphasize is the difference among the l
~2!, ~3!, and ~5!. All the three laws have the function o
stabilizing unstable orbits and same level of robustness
external noise@8#. However, the law~3! and ~5! have the
tracking function which is able to follow the desired orb
when system parameters vary slowly~even the variation is
internal and/or random! @8#. The reason is that the desire
objectivex* is not included in the laws explicitly and th
perturbations can force the system state trajectory to pu
the changed position of the desired orbit automatically. T
tracking technique is different from that@4,5# based on the
OGY method where one has toguessor predict the changed
position in advance.

The difference between Eqs.~5! and~3! is that the valid-
ity of Eq. ~5! is guaranteed as long as the system is cont
348 ©2000 The American Physical Society
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PRE 61 349DYNAMICAL CONTROL OF SYSTEMS NEAR . . .
lable while this may not true for Eq.~3!. This is simply
explained in the following. When the system parameterp is
excited, the perturbed system becomes a two-dimensi
system:

xi 115 f ~xi ,pi !, ~6!

pi 115g~xi ,pi !. ~7!

To stabilize the desired fixed point is to find a suitable fun
tion g which makes the amplitudes of the two eigenvalues
the Jacobian matrixT smaller than one. Mathematically, t
guarantee the solutions of the problem in any case, the fu
tion g should be a function which can give any specific
genvaluesl1 andl2 when] f /]x and] f /]p are given. It is
easy to show that the equations determining the suitableg for
fixed l1 andl2 are

] f

]x

]g

]p
2

] f

]p

]g

]x
5l1l2 ,

] f

]x
1

]g

]p
52~l11l2!.

Thus, at least two adjustable coefficients should be inclu
into the functiong in order to guarantee the solution in ge
eral cases. One can see that the law~5! can satisfy this re-
quirement while Eq.~3! cannot.

In contrast to the control laws~2! and~3!, the control law
~5! has another appropriate function, i.e., to target the
stable orbit from the stable one created at the same tange
bifurcation point without knowing the position of the un
stable one in advance. This function provides another p
sible way to devise a new type of switch using the behav
of the tangent bifurcation instead of the bistability. In
bistable system, generally, there are two stable branche~or
states! and a middle unstable branch~or state!. In experi-
ment, one can only observe the two stable branches by v
ing the system parameters, and the middle branch can n
be observed from the system output because it is unsta
How to get the unstable middle state is considered as a
ticularly interesting subject@10–12#. In this paper, we will
show that the applications of the feedback law~5! can pro-
vide a more general and effective way for experimenta
observing the unstable middle branch in a bistable devic

However, the original form@8# of the control law~5! has
not drawn much attention of experimentalists. An importa
reason may be due to the complication in obtaining the s
able coefficients. In this paper, we will introduce a simplifi
form of the feedback law and suggest a convenient way
implementation in experiments: only using the informati
of the time series measured from the system output and
taining the suitable coefficients by simple analyses. The
lidity of the simplified control law is guaranteed for weak
unstable systems~systems near bifurcation points are impo
tant examples of the weakly unstable ones!. Moreover, the
examples in this paper show that the validity region is su
ciently wide in general, at least wider than that of the fee
back law~3!.

In the next section we derive the simplified control la
based on the rigid results of Ref.@9#. Section III gives nu-
merical results of applying the law to various systems w
underlying equations described by the He´non map, a time-
al
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delayed differential equation, and a coupled map lattice,
spectively. In the last section of this paper, the results
summarized and discussed.

II. SIMPLIFIED CONTROL LAW

In this section, we derive a simplified control law of th
form ~5! based on the theoretical analyses of Refs.@8,9#.
When one perturbs an originaln-dimensional system

xi 115 f ~xi ,p!, ~8!

by adding control to the external parameterp as

pi 115g~xi ,pi !,

the system becomes an (n11)-dimensional system and it
stability can be determined by the eigenvalues of the Ja
bian matrix

T5F ] f

]x

] f

]p

]g

]x

]g

]p

G ,

where]g/]x and]g/]p need to be determined. For nonsi
gular] f ]x and] f ]p, to makeT always stable it demands@9#
a suitable control functiong with (n11) adjustable coeffi-
cients.@The only exception is the prompt linear feedback
type ~2! where onlyn coefficients can guarantee the exi
tence of the solution.# Thus, when adopting a control law o
the type~5!, one needs to construct the law as

pi 115p01k~xi 112xi !1k8~pi2p0!, ~9!

wherekPRn. To simplify Eq. ~9!, we need to introduce the
concept of stability region. The stability region is defined
the region in the coefficient space (k,k8), in which any point
in it can make all the eigenvalues of the matrixT have am-
plitudes smaller than one. Following the procedure of R
@9#, we can show that the stability region always exists fo
fixed pointx* with nonsingular] f /]x and] f /]p. Since the
calculation only needs the data of] f /]x and ] f /]p which
can be obtained in principle from an experimental time se
using the well-known delay coordinate embedding te
nique, the control law~9! can be used in experimental sy
tems without knowing their underlying mathematical mo
els, just like the prompt linear feedback law. However,
measure the derivative behaviors (] f /]x and] f /]p), a high-
quality time series is required, otherwise the deviation of
solutions will be too big to make the calculation valid. Us
ally, a high-quality time series is not available in practic
especially when the underlying dynamics is high dime
sional.

The stability region changes continuously with the eige
values of] f /]x. In the case thatx* is initially stable, the
stability region should be a region in the coefficient spa
around the origin (k,k8). When the fixed point becomes un
stable, i.e., when the maximal amplitude of eigenvalues
] f /]x alters from a value smaller than 1 to a value grea
than 1, the stability region will depart from the original co
tinuously. As long as the amplitude of the maximal eige
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350 PRE 61ZHAO HONG et al.
value remains relatively small, one can reasonably exp
that the stability region should lie in the vicinity of the or
gin.

Now, let us consider a planek-k8 passing through the
origin of the coefficient space. In the case that the fixed po
is initially stable, the plane must intersect with the stabil
region. When the amplitude of the maximal eigenvalue ofx*
varies from a value smaller than one to a value greater th
and becomes bigger and bigger, one can easily imagine
the cross section should evolve as schematically show
Fig. 1~a!. The cross-section may disappear totally when
amplitude becomes big enough, i.e., the desired orbit
comes strongly unstable. This feature stirs our motivation
simplify the control law~9!. Without lose of generality, we
can take the measured signal of an experimental system
the first componentsxi of the system state vectorxi
5(xi ,xi 2d ,xi 22d , . . . ) from the view point of delay coor-
dinate embedding technique. Notice that the parameterpi is
also available from the history records. Thus, we can ap
xi andpi to construct a control law:

pi 115p01k~xi 112xi !1k8~pi2p0!. ~10!

FIG. 1. ~a! The evolution of the stability cross section in th
k-k8 plane. ~b! Schematic stability regions of the stable~down-
tetrahedron! and the unstable~up-tetrahedron! periodic orbits in the
vicinity of a tangential bifurcation point for a two-dimensional ma
The two tetrahedrons are separated exactly by the hyperplank8
51.
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In the case that the desired fixed point is weakly unstable,
plane k-k8 should have a cross section with the stabil
region and therefore the fixed point can be stabilized us
the control law~10!. In this way one avoids the applicatio
of the delayed coordinate embedding technique which
mands a measurement of the derivative qualities] f /]x and
] f /]p. As mentioned above, the use of the delay coordin
embedding technique asks for high quality time series wh
is indeed very difficult to get for a lot of real-world system
Therefore, we expect that the simplified law should exte
the scope of experimental applications of dynamical cont

Fixing k850 in Eq. ~10!, the law reduces to the Pyraga
control law. So the Pyragas’ control law is not only a sim
plified form of Eq.~9! but also a simplified one of Eq.~10!.
Though all these laws can be used to stabilize and track
unstable fixed point without knowing its position in advanc
we suggest to use the latter instead of the former for
following reasons. If the underlying dynamics of the expe
mental system is one dimensional, the control law~10! can
always guarantee the validity of the control while the Py
gas’ law cannot, as pointed out in the introduction section
the case that the system is governed by ann-dimensional
model, the simplified law remains effective if there exists t
cross section between the subspaces@i.e., the axisk in the
case of Pyragas’ control law and the planek-k8 in the case of
Eq. ~10!# and the (n11)-dimensional stability region. In
general, the cross section for the planek-k8 can exist in a
wider parameter region than that of the axisk. This statement
can be easily understood from the demonstration of Fig. 1~a!:
the interval of the cross section onk axis ~i.e., the Pyragas’
case! vanishes atcc after which the down-triangle@the case
of law ~10!# remains to exist in a certain parameter regio

The coefficientsk andk8 can be obtained by scanning th
coefficient plane, as done by Pyragas to find the coefficiek
in his control law. In addition, one can also catch them
the following tracking procedure. Letc1 andc2 be two close
values of bifurcation parameter, wherec1 is smaller andc2 is
larger than the bifurcation point. According to the abo
analyses, the cross sections ofc1 and c2 should exist, and
they must overlap as long asc1 and c2 is close enough, as
shown in Fig. 1~a!. When we choose a point in the overla
region and adjust the parameter fromc1 to c2 slowly, the
system trajectory will be forced to track the fixed point a
tomatically. Technically, it is easy to find points in the ove
lap region by simply trying several times. Atc1, we pick up
a point, say (k1 ,k18), close to the origin and apply it to th
system following the law~10!. If the fixed point remains
stable constantly when adjusting the parameter fromc1 to c2,
then we catch the right coefficients, and at the mean time
get the idea in which direction we shall find the next point
coefficients when further adjusting the system parame
i.e., if k1.0 we can imagine that the cross section sho
move to the right when further increasingc, otherwisek1
,0 indicate an opposite result.

The prerequisite of applying this procedure is that t
desired fixed point must still exist after the bifurcation as t
cases of Hopf bifurcation and period-doubling bifurcation
In the case of tangent bifurcation, a pair of the fixed poi
appear simultaneously, with one stable and the other
stable. So one cannot apply the above procedure to the
gent bifurcation since no fixed point exist at all in one side
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the bifurcation point. In this situation if one needs the syst
to work on the unstable fixed point instead of the stable o
what can one do? One must find a control law to force
system trajectory to leave the stable one and evolve to
unstable one. Generally, one may not know the position
the unstable fixed point in advance. The answer to this pr
lem is to use the control law~9! or more conveniently to
apply the law~10! again. In order to explain how to apply th
law in this situation, we need to know more detailed know
edge about the stability regions of the pair of fixed poi
created from a tangent bifurcation. We have shown@9# that
the stability regions of the stable orbitx1 and the unstable
onex2 are separated by a hyperplanek851, and the former
is below the hyperplane while the latter above, as show sc
matically in Fig. 1~b!. Furthermore, the bottoms of the tw
stability regions on the hyperplane are partly overlapped@the
shadow region in Fig. 1~b!#. Let (k1 ,k2 , . . . ,kn,1) be a point
on the shadow region. It is easy to see that the po
(k1 ,k2 , . . . ,kn,12d) must be located in the stability region
of x1 and the point (k1 ,k2 , . . . ,kn,11d) in that ofx2, where
d is a small positive number. This feature indicates that o
can control the stability ofx1 andx2 by applying the law~9!
with the points of 12d and 11d, respectively. When the
system is close to the bifurcation point enough, the subsp
k12k8 should intersect with the shadow region, which im
plies that the point (k1,0, . . .,0,12d) and the point
(k1,0, . . .,0,11d) are located within the inner of the stabi
ity regions of x1 and x2, respectively. In the other words
when we perturb the system according to the feedback
~10! with (k,k8)5(k1,12d) thenx1 is stable andx2 remains
unstable, but when one perturbs the system with (k,k8)
5(k1,11d) thenx1 becomes unstable and at the mean ti
x2 becomes stable, therefore the system trajectory will de
from x1 and evolve towardsx2 automatically. Thus for the
purpose of targetingx2 from x1, the feedback law~9! can be
replaced by Eq.~10!. The suitable value ofk, although it is
different from a system to another, can be easily found
experiments since we know that it must be close to z
~since the system is close the bifurcation point!. Once one
obtains a suitable value ofk, one can switch the motion o
the system between the two fixed points by adding pertu
tions with (k,16d) alternatively.

The above analyses confirm the validity of the law~10!
when the system is close enough to a bifurcation point. H
far it remains effective must be different for different sy
tems. The following examples examine the validity of t
law for systems with underlying mathematical models d
scribed by a finite-dimensional map, a time-delayed diff
ential equation and a coupled map lattice, respectively.
will see that the parameter region in which the law~10!
remains effective is very wide, usually far into the chao
parameter region.

III. NUMERICAL EXAMPLES

As the first example we consider the case of the He´non
map (x8,y8)5(12ax21by,x), where a is assumed to be
the bifurcation parameter andb the parameter which can b
perturbed aroundb050.3 within db50.02. In order to show
the success of the feedback law~10! for high-periodic orbits,
we pick up a period-7 orbit created ata51.2267 through a
e,
e
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tangent bifurcation. This orbit loses its stability through
period-doubling bifurcation ata51.254. Adding feedback
bi 115b01k(xi 112xi)1k8(bi2b0) to the system (xi and
bi are recorded in every seventh iterations! with k850, we
find that the periodic orbit can be tracked toa51.274 from
a51.25 by suitably adjustingk from 20.1 to 21. Then
fixing k8 to 0.5 and adjustingk suitably we find that it can
further be tracked toa51.30. Clearly, the parameter regio
where the desired unstable orbit can be tracked by using
law ~10! is wider than that of Pyragas’ law.

To simulate the experimental systems, let us assume
we do not know the position of the unstable period-7 orbit
advance. Ata51.23 the system trajectory settles down
the stable period-7 orbit without controlling. We impleme
feedbacks to the system according to the law~10! with k5
20.65 andk851.02. Figure 2 shows that the trajectory
driven towards the stable orbit. When we cancel the con
after the state trajectory settles down on the unstable o
the trajectory returns to the stable one again. Repeating
above procedure, we can switch the system output betw
the stable and the unstable orbits alternately, as show
Fig. 2.

Our second example is a system described byt ẋ(t)
52x(t)1m sin2@x(t21)2xB#, which is a time-delayed dif-
ferential equation with an infinite number of degrees of fre
dom and is applied as a model of laser device consta
@13#. In this equation the evolution timet is measured in the
unit of the delay time. The most interesting behavior of t
system is the bistability. In Fig. 3~a! we fix t50.4 andxB
53.0 and plotxi againstm, wherexi5x( i ) @i.e., the value of
x(t) measured att5 i #. In this figure theS-shaped bistable
solution curve is the stationary solution of the system. T
upper and lower branches of the curve are stable and
middle branch is unstable. With the increase ofm the upper
branch loses its stability atm52.06 through a Hopf bifurca-
tion, and at the mean time a stable limit cycle appears. W
m increases further, the limit cycle loses its stability atm
52.53 and then a stable period-doubling limit cycle appea

We first show the results of tracking the stationary so
tion corresponding to the upper branch of theS-shaped curve
and the limit cycle created by a Hopf bifurcation, respe
tively. Here we takem as our feedback parameter, i.e., w

FIG. 2. Switching the dynamics between the stable and unst
period-7 orbits created by a tangent bifurcation using the con
law ~10!.
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add feedbacksm i 115m01k(xi 112xi)1k8(m i2m0). In the
case of stationary solution, the objective to be tracked
pears as a fixed point in the discrete version. We can puxi
5x( i ) to the feedback law. It is found that the desired o
jective can be tracked only tom52.08 fromm52.05 when
we fix k850 and adjustk suitably. Then fixingk850.5 and
adjustingk suitably, we can track it tom52.22 at least. In
the case of the limit cycle, the time series ofxi measured in
the above way generally appears as a quasiperiodic o
since the period of the limit cycle is generally not a ration
number. In this case we need a different way to measurexi .
We recordx(t) at timet i2d asxi , i.e.,xi5x(t i2d), where
t i denotes the time at thei th x(t) crossing the surface o
sectionx(t)51.8 andd is a positive number limited in the
interval 0,d,1. In this way one may get an infinite numb
of different time series with different values ofd, which
corresponds to the feature of the infinite degrees of the d
systems. In the neighborhood of the bifurcation point, n
merical calculations indicate that the tracking procedure m
be effective by usingxi(t i2d) with an arbitraryd. In gen-
eral, the parameter region in which the feedback law ke
valid depends closely on the coefficientk8 too. For example,
in the case ofd50.8, when we fixk850 and adjustk suit-
ably, the limit cycle can be tracked tom52.75 from m
52.53. When fixingk850.5 and adjustingk, we find that it

FIG. 3. ~a! The bifurcation diagram ofxi versusm, wherexi

5x( i ). The upper branch and the lower branch are the station
solutions of the system while the middle branch is the unsta
stationary solution. The upper branch bifurcates into a limit cy
through a Hopf bifurcation atm52.06 and the limit cycle itself
bifurcates into a period-doubling limit cycle atm52.53.~b! Switch-
ing the motion between the lower and the middle branches and~c!
between the unstable limit cycle and the chaotic motion by us
the feedback law~10!.
p-

-

bit
l

ay
-
y

s

can further be tracked tom53.0, which is already located in
the chaotic region. Fig. 3~c! shows the result of switching th
motion of the system between the limit cycle and the chao
motion atm52.95, wherek50.8 andk850.5 in the ‘‘con-
trol on’’ sections.

Next, we discuss the problem of targeting the midd
branch of theS-shaped curve from the upper or lowe
branches. This problem can also be expressed as switc
the dynamical motion of the system between the branche
the S-shaped curve. In fact, the two turning points of t
S-shaped curve are tangential bifurcation points. Therefor
is just the place to use the targeting function of the con
law ~10!. Let us consider the lower and the middle branch
as an example. From Fig. 3~a! we find thatm51.82 is the
turning point of the lower and the middle branches. Acco
ing to Eq.~10! we add perturbations to the parameterm with
k522.0 andk851.02 atm51.80, wherexi5x( i ). Figure
3~b! shows that the system trajectory initially lying in th
lower branch is driven to the middle branch. After the syst
trajectory settles down on the middle branch, one can
feedbacks withk522.0 andk850.98 to perturb it to return
to the lower branch. In this way we can switch the moti
between the two branches at will, as shown in Fig. 3~b!.

When the system trajectory settles down on the mid
branch, the tracking function of the law can be applied
obtain the whole middle branch, see Fig. 3~a!. The tracking
procedure may fail when the parameters are far from
bifurcation point, which occurs generally for high
dimensional systems, then one has to use the feedback
~9! instead of~10!.

The last example is a spatiotemporal system described
the coupled logistic lattice, xi 11(n)5(12«) f „xi(n)…
10.5«@ f „xi(n21)…1 f „xi(n11)…#1c, where i is the dis-
crete time,n the lattice site,« the lattice coupling constant

FIG. 4. ~a! Bifurcation process of a pattern of the coupled l
gistic lattice.~b! The tracked patterns~first column! and the corre-
sponding uncontroled patterns~second column!. For clearification
only 30 lattices are shown.
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PRE 61 353DYNAMICAL CONTROL OF SYSTEMS NEAR . . .
and f (x)512ax2. c is a parameter that we add to the sy
tem to imitate an external adjustable constant field which
be adjusted aroundc50. Periodic boundary conditions ar
used throughout. Our controlling objective is a pattern fou
at a51.7 and«50.99 with N560. This is a period-1 solu
tion of the system. Figure 4~a! shows the bifurcation proces
of the pattern represented byxi(8) against« at a51.7. In the
direction of decreasing«, the desired pattern loses its stab
ity through a period-doubling bifurcation at«50.98. Adding
feedbacksci 115k@xi 11(8)2xi(8)#1k8(ci2c0) to the sys-
tem at«50.98 and adjustingk in a interval (0.1,0.35) suit-
ably with k850, we can track the pattern to«50.864, where
the desired pattern contracts to a linex* (1)5x* (2)
5x* (3)5•••5x* (60)50.5273.

On the other hand, the desired pattern loses its stab
through a Hopf bifurcation with the increase of« at «
51.006. We add feedbacks to the system and adjustk in the
interval (20.01,20.24) withk850, the pattern is tracked to
«51.02. Again, when we adjustk andk8 simultaneously it
can be tracked at least to«51.05. In the first column of Fig.
4~b!, we show the tracked patterns at the corresponding
rameters designated in the figure. When we cancel the
trol, these patterns will be replaced by new patterns imme
ately, see the second column of Fig. 4~b!. In general, time
series measured at any lattice can be used to realize
above purpose with a slightly difference of control abilit
However, exceptions can also be found. For some patte
there exists the case that the time series measured at a l
shows bifurcation while the output from another lattice e
hibits no impression of the phenomenon. In this case
s

ce

s.
-
n

d

ty

a-
n-
i-

he

s,
tice
-
e

control based on the output of the latter lattice would
invalid.

IV. CONCLUSIONS

In this paper, we introduced a simple but general feedb
law for the purpose of controlling the dynamical behaviors
the neighborhood of the bifurcation point with experimen
signals. The feedback law retains all the functions of
feedback law~9!, i.e., stabilizing, tracking, and targeting th
unstable orbits, but the requirement of the quality of the
perimental time series is soften dramatically since it does
need to use a delay coordinate embedding technique to
culate the feedback coefficients. Even though the validity
the simplified law is guaranteed for weakly unstable syste
in principle, our numerical calculations have shown that it
usually sufficiently useful for practical applications even
spatiotemporal systems.

We would like to point out that the well-known Pyraga
control law is a special form of the control law introduced
this paper, i.e., a special case ofk850. We have especially
emphasized that the latter law is more powerful than
former in our numerical examples by comparing the para
eter regime in which the law is effective.
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